Parahydrogen Induced polarization by homogeneous catalysis: theory and applications.
نویسندگان
چکیده
The alignment of the nuclear spins in parahydrogen can be transferred to other molecules by a homogeneously catalyzed hydrogenation reaction resulting in dramatically enhanced NMR signals. In this chapter we introduce the involved theoretical concepts by two different approaches: the well known, intuitive population approach and the more complex but more complete density operator formalism. Furthermore, we present two interesting applications of PHIP employing homogeneous catalysis. The first demonstrates the feasibility of using PHIP hyperpolarized molecules as contrast agents in (1)H MRI. The contrast arises from the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via PHIP. It allows for the discrimination of a small amount of hyperpolarized molecules from a large background signal and may open up unprecedented opportunities to use the standard MRI nucleus (1)H for, e.g., metabolic imaging in the future. The second application shows the possibility of continuously producing hyperpolarization via PHIP by employing hollow fiber membranes. The continuous generation of hyperpolarization can overcome the problem of fast relaxation times inherent in all hyperpolarization techniques employed in liquid-state NMR. It allows, for instance, the recording of a reliable 2D spectrum much faster than performing the same experiment with thermally polarized protons. The membrane technique can be straightforwardly extended to produce a continuous flow of a hyperpolarized liquid for MRI enabling important applications in natural sciences and medicine.
منابع مشابه
Demonstration of Heterogeneous Parahydrogen Induced Polarization Using Hyperpolarized Agent Migration from Dissolved Rh(I) Complex to Gas Phase
Parahydrogen-induced polarization (PHIP) was used to demonstrate the concept that highly polarized, catalyst-free fluids can be obtained in a catalysis-free regime using a chemical reaction with molecular addition of parahydrogen to a water-soluble Rh(I) complex carrying a payload of compound with unsaturated (C═C) bonds. Hydrogenation of norbornadiene leads to formation of norbornene, which is...
متن کاملParahydrogen-induced polarization by pairwise replacement catalysis on Pt and Ir nanoparticles.
Pairwise and random addition processes are ordinarily indistinguishable in hydrogenation reactions. The distinction becomes important only when the fate of spin correlation matters, such as in parahydrogen-induced polarization (PHIP). Supported metal catalysts were not expected to yield PHIP signals given the rapid diffusion of H atoms on the catalyst surface and in view of the sequential stepw...
متن کاملParahydrogen enhanced NMR reveals correlations in selective hydrogenation of triple bonds over supported Pt catalyst.
Parahydrogen induced polarization using heterogeneous catalysis can produce impurity-free hyperpolarized gases and liquids, but the comparatively low signal enhancements and limited scope of substrates that can be polarized pose significant challenges to this approach. This study explores the surface processes affecting the disposition of the bilinear spin order derived from parahydrogen in the...
متن کاملParahydrogen induced polarization of barbituric acid derivatives: 1H hyperpolarization studies.
Homogeneous hydrogenation of barbituric acid derivatives with parahydrogen yields a substantial increase of the (1)H NMR signals of the reaction products. These physiologically relevant compounds were hydrogenated at both ambient and elevated temperatures and pressures using a standard cationic rhodium catalyst. The resulting nonthermal nuclear spin polarization (hyperpolarization) is limited b...
متن کاملSpontaneous 15N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers
The ability of frustrated Lewis pairs (FLPs) to activate H2 is of significant interest for metal-free catalysis. The activation of H2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyperpolarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce 1H nuclear spin hyperpolarization through a reversible intera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Topics in current chemistry
دوره 338 شماره
صفحات -
تاریخ انتشار 2013